3D全自動(dòng)外泌體熒光檢測分析系統(tǒng)
法國Abbelight公司開發(fā)的3D全自動(dòng)外泌體熒光檢測分析系統(tǒng)是一款無需純化的、全自動(dòng)的可對單個(gè)外泌體進(jìn)行表征分析的全新設(shè)備。該設(shè)備能夠提供外泌體表征信息,包括外泌體粒徑大小、亞型分布、攜帶蛋白表達(dá)、單個(gè)外泌體的膜蛋白與生物標(biāo)志物共定位等。操作簡單,結(jié)果可靠。
3D全自動(dòng)外泌體熒光檢測分析系統(tǒng)基于特異性免疫捕獲技術(shù),允許研究者直接分析特定群體的外泌體。通過單分子定位技術(shù)成像,可以得到單個(gè)外泌體的超分辨成像結(jié)果,尺度可以到20nm。全自動(dòng)外泌體熒光檢測分析系統(tǒng)兼容各種生物樣本,除了純化的外泌體之外,對于血液、尿液、惡性腫瘤、腹水中的外泌體也可直接檢測分析,大大拓展了研究范圍。
應(yīng)用方向及主要特征
超高分辨單外泌體成像
左:2D單個(gè)外泌體成像;右:3D單個(gè)外泌體成像
外泌體粒徑分析:通過團(tuán)簇分析外泌體的整體和亞群的粒徑分布
膜蛋白表征與共定位分析,以CD63,CD81&CD9為例表征其單陽,雙陽和三陽的比例
外泌體內(nèi)容物表征
對比穿膜處理后外泌體中內(nèi)容物aGFP的表達(dá)
觀測細(xì)胞中外泌體的分布情況,研究細(xì)胞中細(xì)胞器或者其他蛋白和外泌體的定位關(guān)系
應(yīng)用案例
法國Abbelight公司開發(fā)的3D全自動(dòng)外泌體熒光檢測分析系統(tǒng)是一款無需純化的、全自動(dòng)的可對單個(gè)外泌體進(jìn)行表征分析的全新設(shè)備。該設(shè)備能夠提供單個(gè)外泌體表征信息,包括外泌體粒徑大小、亞型分布、攜帶蛋白表達(dá)、單個(gè)外泌體的膜蛋白與生物標(biāo)志物共定位等。
應(yīng)用領(lǐng)域:腫瘤診斷,藥系統(tǒng)開發(fā),眼科疾病診斷,疫苗研發(fā),脊髓受傷機(jī)制研究,血漿/血清外泌體分析,外泌體工程化,呼吸疾病診斷
測試數(shù)據(jù)
外泌體2D成像
外泌體3D成像
外泌體形態(tài)分析
發(fā)表文章
[1] Storci, Gianluca, et al. "CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells." The Journal of Clinical Investigation 134.14 (2024).
[2] Huang, Xiaowan, et al. "Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors." Nature Nanotechnology (2024): 1-9.
[3] Ye, Qian-Ni, et al. "Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity." Nature Communications 15.1 (2024): 6211.
[4] Shafaq-Zadah, Massiullah, et al. "Exploration into Galectin-3 Driven Endocytosis and Lattices." Biomolecules 14.9 (2024): 1169.
[5] Sanchez-Londono, Mariana, et al. "Visualization of Type IV-A1 CRISPR-mediated repression of gene expression and plasmid replication." Nucleic Acids Research 52.20 (2024): 12592-12603.
[6] Rajbanshi B, Guruacharya A, Mandell J W, et al. Localization, induction, and cellular effects of tau phosphorylated at threonine 217 1[J]. Alzheimer's & Dementia, 2023, 19(7): 2874-2887.
[7] Friedl, Karoline, et al. "Robust and fast multicolor Single Molecule Localization Microscopy using spectral separation and demixing." BioRxiv (2023): 2023-01.
[8] Baschieri, Francesco, et al. "Fibroblasts generate topographical cues that steer cancer cell migration." Science Advances 9.33 (2023): eade2120.
[9] Wessel, Aimee K., et al. "Escherichia coli SPFH membrane microdomain proteins HflKC contribute to aminoglycoside and oxidative stress tolerance." Microbiology Spectrum 11.4 (2023): e01767-23.
[10] Liu, Wei, et al. "Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation." Journal of leukocyte biology 111.4 (2022): 771-791.
[11] Rajbanshi, Binita, et al. "Localization, induction, and cellular effects of tau phosphorylated at threonine 217." Alzheimer's & Dementia (2023).
[12] Pagliuca, M., et al. "38P Single molecule localization microscopy for extracellular vesicles detection in cancer." Annals of Oncology 33 (2022): S1395-S1396.
[13] Robaszkiewicz, A., and K. Gronkowska. "36P EP300 as an epigenetic target in p53 wild-type tumors treated with cisplatin." Annals of Oncology 33 (2022): S1395.
[14] He, Jin, et al. "Heterozygous Seryl‐tRNA Synthetase 1 Variants Cause Charcot–Marie–Tooth Disease." Annals of Neurology (2022).
[15] Gazzola, Morgan, et al. "Microtubules self-repair in living cells." Current Biology (2022).
[16] Liu, Wei, et al. "Mitofusin‐2 regulates leukocyte adhesion and β2 integrin activation." Journal of Leukocyte Biology 111.4 (2022): 771-791.
[17] Portes, Marion, et al. "Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts." Elife 11 (2022): e75610.
[18] Wessel, Aimee K., et al. "Escherichia coli membrane microdomain SPFH protein HflC interacts with YajC and contributes to aminoglycoside and oxidative stress tolerance." bioRxiv (2022).
[19] Radhakrishnan, A. V., et al. "Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration." The Integrin Interactome. Humana, New York, NY, (2021). 85-113.
[20] Jouchet, Pierre, et al. "Nanometric axial localization of single fluorescent molecules with modulated excitation." Nature Photonics (2021): 1-8.
[21] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature Communications 12.1 (2021): 3104.
[22] Pernier, Julien, et al. "Myosin 1b flattens and prunes branched actin filaments." Journal of cell science 133.18 (2020).
[23] Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: optimized single molecule localization microscopy." Methods 174 (2020): 100-114.
[24] Mau, Adrien, et al. "Fast scanned widefield scheme provides tunable and uniform illumination for optimized SMLM on large fields of view." bioRxiv (2020).
[25] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature Communications 10.1 (2019): 1980.
[26] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.
[27] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).
[28] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.
[29] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082.
[30] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.
用戶單位