狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            您好, 歡迎來到化工儀器網(wǎng)

            | 注冊(cè)| 產(chǎn)品展廳| 收藏該商鋪

            13810146393

            technology

            首頁   >>   技術(shù)文章   >>   無人機(jī)高光譜在樹種分類識(shí)別上的應(yīng)用研究

            江蘇雙利合譜科技有限公司

            立即詢價(jià)

            您提交后,專屬客服將第一時(shí)間為您服務(wù)

            無人機(jī)高光譜在樹種分類識(shí)別上的應(yīng)用研究

            閱讀:4836      發(fā)布時(shí)間:2019-12-19
            分享:

            0 引言

            高光譜遙感具有光譜分辨率高、波段范圍窄、圖譜合一、連續(xù)成像等特點(diǎn),能夠區(qū)分出地物光譜的細(xì)微差別,探測(cè)到其他寬波段遙感無法探測(cè)的信息。因此,高光譜遙感在生態(tài)、大氣和海洋等諸多應(yīng)用領(lǐng)域具有很大優(yōu)勢(shì)。近年來,高光譜遙感在林業(yè)方面的一個(gè)重要應(yīng)用是對(duì)森林樹種類型進(jìn)行識(shí)別。森林樹種類型識(shí)別的主要目的是提取樹種的專題信息,為劃分森林類型、繪制林相圖和清查森林資源提供基礎(chǔ)和依據(jù)。目前,國內(nèi)外利用高光譜遙感進(jìn)行樹種識(shí)別主要是從葉片、冠層和高光譜影像3個(gè)研究尺度開展?;谌~片的樹種識(shí)別主要是對(duì)葉片反射率及其變換形式運(yùn)用統(tǒng)計(jì)方法、遺傳算法等進(jìn)行分析,以樹種識(shí)別的可行性分析與識(shí)別潛力為主要研究內(nèi)容;基于冠層的樹種識(shí)別主要運(yùn)用光譜信息散度法、光譜角填圖法等基于光譜信息的遙感圖像分類方法,并利用地物光譜儀獲取的林分冠層反射率曲線,進(jìn)行樹種分類;基于高光譜影像的樹種識(shí)別主要通過對(duì)影像進(jìn)行去噪降維等預(yù)處理后,運(yùn)用監(jiān)督或非監(jiān)督分類的方法進(jìn)行樹種識(shí)別。

            國外已有很多學(xué)者對(duì)高光譜樹種識(shí)別進(jìn)行了研究。Gong等利用ANN分類法對(duì)光譜數(shù)據(jù)進(jìn)行判別,區(qū)分出1種闊葉樹種和6種針葉樹種,分類精度大于90%;Martin等利用AVIRIS高光譜數(shù)據(jù)與樹種葉片化學(xué)成分之間的關(guān)系,鑒別出11種樹種類型,可有效進(jìn)行樹種分類;Petropoulos等分別采用支持向量機(jī)和基于對(duì)象的分類方法,對(duì)Hyperion高光譜影像進(jìn)行土地覆蓋類型分類,雖2 種分類效果均較好,但基于對(duì)象的分類方法精度更高。國內(nèi)也有越來越多的學(xué)者進(jìn)行森林樹種識(shí)別探究。童慶禧等利用光譜波形匹配算法對(duì)MAIS高光譜影像進(jìn)行植被類型識(shí)別,獲得了潘陽湖典型濕地的植被分類圖,對(duì)高光譜的樹種識(shí)別提供了實(shí)用依據(jù);王圓圓等采用隨機(jī)子空間法對(duì)OMIS高光譜遙感數(shù)據(jù)進(jìn)行識(shí)別,并利用遺傳算法來提高分類精度;劉秀英等使用地物光譜儀測(cè)得的光譜數(shù)據(jù),采用逐步判別分析方法、特征波段選擇等方法識(shí)別出4種樹種。綜上所述,國內(nèi)外利用高光譜數(shù)據(jù)進(jìn)行樹種識(shí)別的研究已取得階段性的進(jìn)展,從研究方法看,主要基于不同樹種具有不同光譜特征的原理,通過特征波段的合理選擇,或者通過波段變換對(duì)高光譜數(shù)據(jù)進(jìn)行降維來識(shí)別樹種。

            高光譜影像波段數(shù)多,信息量大,為地物的精細(xì)識(shí)別提供優(yōu)勢(shì)的同時(shí),也帶來了數(shù)據(jù)量多,波段間相關(guān)性大,處理精度和效率下降的問題。本文以上海交通大學(xué)植物園為研究區(qū),利用無人機(jī)高光譜數(shù)據(jù),運(yùn)用z佳指數(shù)波段選擇法和see5.0決策樹自動(dòng)分類相結(jié)合進(jìn)行樹種識(shí)別,有利于無人機(jī)高光譜數(shù)據(jù)分類識(shí)別精度的進(jìn)一步提高。

            1 研究區(qū)及數(shù)據(jù)源

            1.1研究區(qū)

            研究區(qū)位于上海交通大學(xué)閔行校區(qū)植物園,如圖1所示。

            圖1 研究區(qū)域位置

            1.2 數(shù)據(jù)獲取

            2017年7月28日,運(yùn)用大疆的無人機(jī)M600 Pro搭載四川雙利合譜科技有限公司自足研發(fā)的GaiaSky-mini2在上海交通大學(xué)閔行校區(qū)植物園上空進(jìn)行數(shù)據(jù)采集。數(shù)據(jù)獲取當(dāng)天晴朗無(少)云,飛行高度為200米,采用無人機(jī)懸停高光譜相機(jī)內(nèi)置推掃的方式獲取高光譜數(shù)據(jù)。獲取的高光譜影像數(shù)據(jù)具體參數(shù)見表1,無人機(jī)高光譜相機(jī)如圖2所示。

            表1 高光譜影像數(shù)據(jù)具體參數(shù)

            參數(shù)

            光譜范圍/nm

            波段個(gè)數(shù)

            圖像分辨率

            空間分辨率

            單景幅寬/m

            光譜分辨率/nm

            鏡頭焦距/mm

            GaiaSky

            400-1000

            176

            1920*1400

            10cm

            95*95

            3.5

            18.5

            圖2 無人機(jī)高光譜起飛示意圖

            1.3 數(shù)據(jù)預(yù)處理

            無人機(jī)搭載的高光譜相機(jī)獲取的高光譜數(shù)據(jù)為數(shù)字量化值(簡(jiǎn)稱DN值),無物理意義,需轉(zhuǎn)化為具有物理意義的反射率數(shù)據(jù)。具體轉(zhuǎn)化方式如公式1所示。

            (1)

            其中,Reftarget為目標(biāo)物的反射率,DNtarget為目標(biāo)物的DN值,DNdark為相機(jī)本身的暗點(diǎn)流DN值,DNwhite為參考板的DN值,Refwhite為參考板的反射率。

            降噪的目的主要是為了突出圖像的特征信息,提高圖像的信噪比。本研究利用ENVI5.3自帶的curve smoothing對(duì)圖像進(jìn)行降噪處理,處理結(jié)果如圖3。

            圖3光譜降噪前后的反射率(左為降噪前,右為降噪后)

            2.結(jié)果與分析
            2.1 不同樹種的光譜反射率對(duì)比分析

            圖4分別列舉了四種不同樹種、雜草、樹蔭、水體和裸土的光譜反射率曲線,從圖4可知,水體、裸土和樹蔭的反射率光譜曲線與植物的反射率光譜曲線差異較大,可利用波段閾值等方法將其與植物區(qū)分開,但對(duì)于雜草和不同樹種之間的分類識(shí)別則不能通過簡(jiǎn)單的波段閾值進(jìn)行區(qū)分。

            圖4不同樹種與地面其他地物的光譜反射率

            2.2 Z佳指數(shù)法(OIF)

            目前應(yīng)用比較廣泛的Z佳波段選取方法有各波段信息量的比較、波段間相關(guān)性比較、Z佳指數(shù)法(O IF)、各波段數(shù)據(jù)的信息熵和聯(lián)合熵、協(xié)方差矩陣特征值法、波段指數(shù)法等。

            在各種方法中,由美國查維茨提出的Z佳指數(shù)法( OIF)綜合考慮單波段圖像的信息量及各波段間的相關(guān)性,更接近于波段選擇的原則,且計(jì)算簡(jiǎn)單,易于實(shí)現(xiàn),得到廣泛的應(yīng)用。OIF指數(shù)的計(jì)算公式如下:

                          (2)

            其中:Si為第i個(gè)波段的標(biāo)準(zhǔn)差,Rij為i、j 兩波段的相關(guān)系數(shù)。對(duì)n波段圖像,先統(tǒng)計(jì)計(jì)算單波段圖像的標(biāo)準(zhǔn)差,計(jì)算各波段間的相關(guān)系數(shù)矩陣,再分別求出所有可能的波段組合對(duì)應(yīng)的OIF指數(shù),根據(jù)該指數(shù)大小來判斷各種波段組合的優(yōu)劣。指數(shù)越大,則相應(yīng)組合影像所包含的信息量就越大。對(duì)OIF指數(shù)從大到小進(jìn)行排序,Z大O IF指數(shù)對(duì)應(yīng)的波段組合即為Z佳波段組合。以圖5為例,利用OIF篩選高光譜數(shù)據(jù)的特別波段,表2分別列舉了*個(gè)特征波段組合及對(duì)應(yīng)的OIF指數(shù)。從表2可知利用Z佳指數(shù)法篩選的特征波段*個(gè)波長組合對(duì)應(yīng)的波長位置相差不大,且OIF指數(shù)值也十分接近。

            圖5 無人機(jī)高光譜采集的單景影像(RGB彩色合成)

            表2 OIF指數(shù)篩選的*個(gè)波段組合

            組合排列

            波段組合(nm)

            OIF指數(shù)

            1

            485.6、784.2、878

            0.29319887

            2

            485.6、780.7、878

            0.29317102

            3

            485.6、784.2、881.6

            0.29310915

            4

            485.6、784.2、874.3

            0.29310489

            5

            485.6、780.7、881.6

            0.29308453

            6

            485.6、780.7、878

            0.29307423

            7

            482.4、784.2、878

            0.29307401

            8

            482.4、780.7、878

            0.29304684

            9

            485.6、863.4、870.7

            0.29303626

            10

            485.6、784.2、874.3

            0.29300225

             
            2.3 分類識(shí)別方法

            see5.0機(jī)器學(xué)習(xí)規(guī)則軟件是美國USGS在完成國家土地覆蓋制圖(NLCD)項(xiàng)目中開發(fā)的一個(gè)自動(dòng)提取分類規(guī)則的數(shù)據(jù)挖掘工具。表3為利用全波段和特征波段進(jìn)行樹種識(shí)別的總體分類精度、Kappa系數(shù)和運(yùn)行時(shí)間,從表中可知,利用特征波段運(yùn)行時(shí)間更短,且精度與利用全波段進(jìn)行分析的精度接近。

            表3 不同組合分類精度對(duì)比分析

            分類方法

            總體分類精度

            Kappa系數(shù)

            運(yùn)行時(shí)間

            全波段+see5.0

            96.7%

            0.94

            38min

            特征波段+see5.0

            95.3%

            0.93

            1min

            考慮到用戶科研數(shù)據(jù)的保密性,本研究僅用單景高光譜影像數(shù)據(jù)進(jìn)行不同樹種的分類識(shí)別,分類識(shí)別結(jié)果如圖6所示。用戶可利用無人機(jī)高光譜相機(jī)獲取的多組數(shù)據(jù)進(jìn)行拼接,然后再進(jìn)行樹種的分類,步驟和算法均是相同的。

            圖6 利用特征波段+see5.0的分類效果圖

            3、結(jié)論

            本研究利用四川雙利合譜科技有限公司自主研發(fā)的無人機(jī)高光譜相機(jī)GaiaSky-mini2,通過鏡像處理、黑白幀校正和降噪等預(yù)處理,并采用Z佳指數(shù)法篩選特征波長,選用see5.0分類方法進(jìn)行分類識(shí)別不同的樹種和其他地物,得出如下結(jié)論:

            1) 該無人機(jī)高光譜數(shù)據(jù)共176個(gè)波段,采用Z佳指數(shù)法獲取的三個(gè)特征波長,可以很好地刻畫區(qū)分各個(gè)類別,實(shí)現(xiàn)樹種級(jí)的識(shí)別;

            2) 采用特征波長和全波段進(jìn)行地物的區(qū)分,其分類精度差別不大;

            3) 經(jīng)實(shí)地驗(yàn)證,各類別范圍和分布區(qū)域較準(zhǔn),特征波段+see5.0的總體分類精度達(dá)到95.3%,Kappa系數(shù)為 0.93。

            4) 由于數(shù)據(jù)的保密性,未對(duì)拼接好的無人機(jī)高光譜影像數(shù)據(jù)進(jìn)行不同樹種的分類識(shí)別。拼接好的高光譜影像數(shù)據(jù)覆蓋的地面范圍更廣,樹種更多,影像中的其他地物也更多,不同地物之間可能存在“同物異譜,異物同譜”的現(xiàn)象,對(duì)于不同樹種之間分分類識(shí)別難度更大,可能需要進(jìn)一步改進(jìn)波段選擇的方法和分類方法,方能更好地區(qū)分不同的樹種。

            會(huì)員登錄

            請(qǐng)輸入賬號(hào)

            請(qǐng)輸入密碼

            =

            請(qǐng)輸驗(yàn)證碼

            收藏該商鋪

            標(biāo)簽:
            保存成功

            (空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

            常用:

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
            在線留言