狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            | 注冊| 產(chǎn)品展廳| 收藏該商鋪

            行業(yè)產(chǎn)品

            13395745986
            當(dāng)前位置:
            寧波海爾欣光電科技有限公司>>技術(shù)文章>>虎年新干貨:高速紅外光電探測器為什么這么火?

            虎年新干貨:高速紅外光電探測器為什么這么火?

            閱讀:2307        發(fā)布時(shí)間:2022/2/17
            分享:

            近年來,許多工業(yè)、軍事和科學(xué)應(yīng)用領(lǐng)域?qū)?/span>遠(yuǎn)紅外Mid/Far-IR波長的光電探測非常感興趣。導(dǎo)致地球暖化的大氣痕量溫室氣體分子在中紅外波長表現(xiàn)出強(qiáng)烈而*的特征吸收譜線,通常也稱為分子指紋區(qū)域",使其成為氣體傳感的理想?yún)^(qū)域[1]。

            image.png 

            中紅外波段常被稱為分子指紋區(qū)域"

            自由空間光通信FSO在現(xiàn)代及未來光通信系統(tǒng)中意義非凡,特別是對于構(gòu)建局域網(wǎng)和建筑物間的通信鏈路光信號地球大氣層內(nèi)傳輸,大氣中水汽的吸收和霧霾的瑞利散射降低,且更長的波長具備更好的衍射能力,使中遠(yuǎn)紅外波長區(qū)域?qū)ψ杂煽臻g光通信和激光雷達(dá)LiDAR的應(yīng)用更具有吸引力[2-3]。

            紅外頻率梳MIR Frequency Comb)最近的發(fā)展,為頻率梳光譜學(xué)帶來了新的機(jī)遇,它提供了寬光譜范圍、精確的分辨率和快速的采集時(shí)間。在中波紅外長波紅外范圍內(nèi),頻率梳對于精確定義分子超精細(xì)結(jié)構(gòu)非常有價(jià)值。該技術(shù)的發(fā)展依賴于對射頻重復(fù)頻率光脈沖探測,因此需要覆蓋相應(yīng)頻段的高速紅外光電探測器[4]。

            此外,在地空遙感領(lǐng)域,中紅外激光外差光譜儀是一種基于相干探測原理的光譜測量技術(shù),其利用單色激光與太陽光信號混頻,可得到高分辨率的分子指紋"光譜信息。由于外差混頻的原理,是將與激光頻率接近的中遠(yuǎn)紅外信號轉(zhuǎn)移至射頻RF范圍進(jìn)行處理,因此,這些高速中紅外光譜應(yīng)用,既需要能夠響應(yīng)中紅外光子的材料,也迫切需要帶寬足夠高,足夠靈敏的射頻運(yùn)算放大電路[5]

            今天,大多數(shù)用于高性能和寬光譜范圍應(yīng)用的中遠(yuǎn)紅外探測器都基于窄帶隙碲鎘汞MCT材料,探測器能夠以高量子效率實(shí)現(xiàn)1 - 30 µm范圍內(nèi)的波長響應(yīng)。與近紅外光電探測器相比,中紅外探測器具有更高的噪聲,因此對探測器芯片低溫冷卻仍被廣泛用于提高MCT關(guān)鍵器件的性能。

            昕虹光電經(jīng)過多年研發(fā),推出一款高帶寬的中紅外光電探測器——HFPD-M-B高速M(fèi)CT制冷型光電探測器探測器2~12um的中紅外光譜波段光波敏感,為有高速信號探測需求的應(yīng)用特殊定制,能夠滿足最高到100MHz高頻信號輸出。

            image.png 

            昕虹光電HFPD-M-B高速M(fèi)CT制冷型光電探測器

            HFPD-M-B支持直流或交流耦合輸出。探測器與前置放大電路、半導(dǎo)體熱電冷卻器(TEC)控制器高度集成,通過反饋電路將探測器元件的溫度控制在負(fù)四十?dāng)z氏度以下,從而將熱噪聲對輸出信號的影響減小。探測器外殼采用全鋁合金材料,既可起到屏蔽環(huán)境電磁干擾,也具備良好的散熱性能。

            技術(shù)參數(shù)

            微信圖片_20220217093754.png

            參考文獻(xiàn)

            [1] B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications (John Wiley & Sons, 2008)

            [2] J. J. Liu, B. L. Stann, K. K. Klett, P. S. Cho, and P. M. Pellegrino, “Mid and long-wave infrared free-space optical communication," in Laser Communication and Propagation through the Atmosphere and Oceans VIII (International Society for Optics and Photonics, 2019), 11133, p. 1113302.

            [3] Y. Gong, L. Bu, B. Yang, and F. Mustafa, “High Repetition Rate Mid-Infrared Differential Absorption Lidar for Atmospheric Pollution Detection," Sensors 20(8), 2211 (2020).

            [4] A. Schliesser, N. Picqué, and T. W. H?nsch, “Mid-infrared frequency combs," Nat. Photonics 6(7), 440–449 (2012).

            [5] Atmospheric trace gas measurements using laser heterodyne spectroscopy, Damien Weidmann, in “Advances in Spectroscopic Monitoring of the Atmosphere", W. Chen, D.S. Venables, M.W. Sigrist (Eds), pages 159-223, Elsevier, 2021. doi: 10.1016/B978-0-12-815014-6.00005-1


            會員登錄

            ×

            請輸入賬號

            請輸入密碼

            =

            請輸驗(yàn)證碼

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 二維碼 意見反饋 在線交流
            在線留言