文獻名: Calcium-enhanced retention of humic substances by carbon nanotube membranes: Mechanisms and implication
作者: Yankun He,Lanlan Qin,Haiou Huang
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
摘要:Efficient removal of humic substances (HS) in natural water is of importance to drinking water treatment. In this study, the adsorption and retention of HS by multi-walled carbon nanotube (MWCNT) membranes were systematically investigated by dynamic filtration of synthetic and natural surface water. In the absence of Ca(II), HS were dominated by small, dissolved species albeit the varying pH. Accordingly, HS retention by the MWCNT layers only ranged from 15%-65% at the end of the filtration. In contrast, the presence of Ca(II) in the feed water partially transformed HS molecules into colloidal aggregates as found by light scattering analyses. Furthermore, molecular dynamics (MD) simulation results reveal that Ca(II) complexation with -COO- on MWCNT and humic acid (HA) not only leads to HA aggregation in the feed solution, but also promotes HA adsorption onto carboxylated MWCNT. The modeling results are consistent with the high retention of HS by the carboxylated MWCNT membrane, i.e., >90% for the synthetic model water and >85% for the natural water, at a moderate calcium concentration range of 0.5–2.0 mM. Considering the widespread presence of calcium in natural water, these findings suggested that carboxylated MWCNT has a potential for effective adsorptive filtration of HS in drinking water.
關鍵詞:Carbon nanotubes;Functional groups;Humic substances;Adsorption;Retention
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網(wǎng)聯(lián)系,否則視為放棄相關權利。