狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


            化工儀器網(wǎng)>技術(shù)中心>其他文章>正文

            歡迎聯(lián)系我

            有什么可以幫您? 在線咨詢

            一位大咖用Octet發(fā)表了20篇CNS!

            來源:德國賽多利斯集團(tuán)   2023年09月25日 15:12  

            AI藥物在近幾年發(fā)展迅速,其中,蛋白質(zhì)從頭設(shè)計(jì)無疑是AI設(shè)計(jì)藥物中的重頭戲與熱點(diǎn)。它不僅可以針對不可成藥靶點(diǎn)的藥物和自然中不存在的蛋白進(jìn)行設(shè)計(jì),而且大大縮短了藥物研發(fā)的周期。


            華盛頓大學(xué)醫(yī)學(xué)院的David Baker教授是該領(lǐng)域的強(qiáng)者。當(dāng)然,AI再牛,也需要用實(shí)驗(yàn)手段去表征設(shè)計(jì)的蛋白。比如,使用Octet® 非標(biāo)記分子互作系統(tǒng)檢測設(shè)計(jì)的蛋白與靶點(diǎn)的親和力。目前,David Baker課題組已使用Octet® 檢測蛋白親和力發(fā)表了近40篇文章,其中CNS文章就有近20篇!(文章列表見文末)


            這里,陳老師就介紹一下他今年發(fā)表的幾篇CNS文章。

            Nature

            De novo design of protein structure and function with RF diffusion[1]


            本文結(jié)合擴(kuò)散模型(RF diffusion)和用深度學(xué)習(xí)算法,實(shí)現(xiàn)了從頭設(shè)計(jì)合成蛋白質(zhì)的目標(biāo),設(shè)計(jì)成功率高兩個(gè)數(shù)量級。針對已知的五個(gè)靶標(biāo),只需要不到100個(gè)候選即可達(dá)到nM級別的親和力(全部用BLI進(jìn)行檢測)。同時(shí),研究人員還設(shè)計(jì)了一種蛋白與其底物(流感血凝素)的復(fù)合物,并使用冷凍電鏡解析了其結(jié)構(gòu)。結(jié)果顯示,冷凍電鏡解析的結(jié)構(gòu)與設(shè)計(jì)的模型幾乎一模一樣,從而證明了該模型的準(zhǔn)確性。為了進(jìn)一步驗(yàn)證生成的蛋白是否具有結(jié)合活性,研究人員繼續(xù)使用Octet®對這兩種蛋白的結(jié)合進(jìn)行驗(yàn)證。

            圖片

            圖1.(a-c) 從頭設(shè)計(jì)靶標(biāo)蛋白的結(jié)合蛋白,針對五個(gè)靶標(biāo),從頭設(shè)計(jì)結(jié)合蛋白,BLI 響應(yīng)信號值≥陽性對照1/2為候選;(b)RF diffusion成功率高出兩個(gè)數(shù)量級; (d) 親和力最高的結(jié)合物,結(jié)合KD為28nM; (e-h) 結(jié)構(gòu)學(xué)驗(yàn)證

             

            研究團(tuán)隊(duì)表示,RF diffusion是對目前蛋白質(zhì)設(shè)計(jì)方法的一次綜合改進(jìn),能夠產(chǎn)生總長度達(dá)600個(gè)氨基酸殘基的結(jié)構(gòu),其復(fù)雜性和準(zhǔn)確度均比之前更高。研究團(tuán)隊(duì)還表示,對該方法的進(jìn)一步改進(jìn)或能設(shè)計(jì)出復(fù)雜程度更高的全新蛋白質(zhì)。

            Nature

            De novo design of modular peptite-binding proteins by superhelical matching


            針對內(nèi)在無序區(qū)的重復(fù)性蛋白和多肽,本文開發(fā)了一種從頭設(shè)計(jì)蛋白的通用性方法,能以大約 20% 的成功率高效設(shè)計(jì)出多肽結(jié)合蛋白。這些蛋白具備低至皮摩(pM)級別的高親和力、高特異性、高熱穩(wěn)定性以及高精度。而且還證實(shí)了該方法可以靶向更廣闊的非重復(fù)性多肽區(qū)域、以及可以延伸至人源蛋白的復(fù)雜網(wǎng)絡(luò)。

            審稿人評價(jià)稱:“表征非常詳盡,親和力高達(dá)納摩爾至皮摩爾范圍,并且具有很高的特異性。設(shè)計(jì)與結(jié)構(gòu)的匹配也表明核心方法是合理的。”

             

            這種高親和力、高特異性就是通過Octet® 來進(jìn)行檢測的。

             

            圖片

            圖2. 將生物素化的目標(biāo)肽加載到生物傳感器上,并和設(shè)計(jì)的binder進(jìn)行結(jié)合解離,紅色矩形框表示相匹配的結(jié)合;可見,設(shè)計(jì)的binder與目標(biāo)多肽的良好特異性

            Science

            Top-down design of protein architectures with reinforcement learning

             

            該研究開發(fā)了一種基于強(qiáng)化學(xué)習(xí)的蛋白質(zhì)設(shè)計(jì)軟件,并證明了它有能力創(chuàng)造有功能的蛋白質(zhì)。這項(xiàng)工作用于設(shè)計(jì)高度穩(wěn)定和多功能的多聚蛋白籠組裝結(jié)構(gòu)和納米蛋白顆粒,開啟了蛋白質(zhì)設(shè)計(jì)的新時(shí)代。該技術(shù)對癌癥治療、再生醫(yī)學(xué)、強(qiáng)效疫苗和可生物降解日用品都有積極影響,文章同樣使用Octet® 檢測了設(shè)計(jì)的多聚蛋白顆粒與已知表位抗體的結(jié)合,以進(jìn)一步驗(yàn)證其結(jié)構(gòu)的正確性。

            圖片

            圖3. Octet® 親和力測定發(fā)現(xiàn)設(shè)計(jì)的單體蛋白聚合顆粒可以與識別不同表位抗體結(jié)合,表明單體蛋白在聚合顆粒上的構(gòu)象依舊完整。

             

             

             

             

             

            Octet® 為什么如此受歡迎呢?

            因?yàn)镺ctet® 用于親和力驗(yàn)證的優(yōu)點(diǎn)在于

            • 非標(biāo)記Direct binding是趨勢,不需要標(biāo)記和信號放大,可以更好的保持反應(yīng)物的活性

            • 快速測定親和力,提供結(jié)合速率常數(shù)和解離速率常數(shù)更加定量化地表征分子互作

            • 無洗滌步驟,可測弱親和力(解離快)

            • 寫入了美國藥典,文章多,認(rèn)可度廣

            • 萬金油技術(shù),可以用與檢測DNA,小分子,蛋白質(zhì)等各種生物分子

            • 操作簡便,耗材及維護(hù)成本低

             

             

             

            盡管經(jīng)過不同的AI算法優(yōu)化,Binder設(shè)計(jì)的成功率已有所提高,但目前設(shè)計(jì)出高親和力的Binder仍然具有相當(dāng)大的難度。對PPI(蛋白質(zhì)相互作用)的建模和理解仍然需要進(jìn)行大量的工作。Octet® 可以真正實(shí)現(xiàn)高通量、快速的表征和檢測,這極大地加速了科研進(jìn)程,實(shí)現(xiàn)預(yù)測和驗(yàn)證的有機(jī)結(jié)合。

             

             


            -參考文獻(xiàn)

             

            [1] De novo design of protein structure and function with RFdiffusion

            JL Watson, D Juergens, NR Bennett, BL Trippe, J Yim… - Nature, 2023 - nature.com

            [2] De novo design of modular peptide-binding proteins by superhelical matching.nature,2023

            [3] Top-down design of protein architectures with reinforcement learning.

            SCIENCEVOL. 380, NO. 6642

            [4] Massively parallel de novo protein design for targeted therapeutics

            …, X Huang, R Jin, IA Wilson, DH Fuller, D Baker - Nature, 2017 - nature.com

            [5] Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing

            …, H Kamisetty, P Blair, IA Wilson, D Baker - Nature …, 2012 - nature.com

            [6] De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

            …, L Stewart, MS Diamond, D Veesler, D Baker - Science, 2020 - science.org

            [7] De novo design of bioactive protein switches

            …, JE Dueber, WRP Novak, H El-Samad, D Baker - Nature, 2019 - nature.com

            [8] High-throughput characterization of protein–protein interactions by reprogramming yeast mating

            D Younger, S Berger, D Baker… - Proceedings of the …, 2017 - National Acad Sciences

            [9] A potent anti-malarial human monoclonal antibody targets circumsporozoite protein minor repeats and neutralizes sporozoites in the liver

            …, R Vistein, C Barillas-Mury, R Amino, D Baker… - Immunity, 2020 - Elsevier

            [10] Quadrivalent influenza nanoparticle vaccines induce broad protection

            …, MC Crank, L Stewart, KK Lee, M Guttman, D Baker… - Nature, 2021 - nature.com

            [11] Transferrin receptor targeting by de novo sheet extension

            …, DE Ingber, J Abraham, D Baker - Proceedings of the …, 2021 - National Acad Sciences

            [12] Receptor subtype discrimination using extensive shape complementary designed interfaces

            …, CJ Kuo, KC Garcia, D Baker - Nature structural & …, 2019 - nature.com

            [13] Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease

            …, R Ravichandran, L Carter, L Stewart, D Baker… - Cell Host & Microbe, 2021 - Elsevier

            [14] Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations

            …, G Alter, WR Schief, S Crotty, NP King, D Baker… - npj Vaccines, 2020 - nature.com

            [15] De novo design of potent and selective mimics of IL-2 and IL-15

            …, GJL Bernardes, M Dougan, KC Garcia, D Baker - Nature, 2019 - nature.com

            [16] Computational design of proteins targeting the conserved stem region of influenza hemagglutinin

            …, C Dreyfus, JE Corn, EM Strauch, IA Wilson, D Baker - Science, 2011 - science.org

            [17] Reconfigurable asymmetric protein assemblies through implicit negative design

            …, J Decarreau, HM Morris, A Kang, AK Bera, D Baker - Science, 2022 - science.org

            [18] Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens

            …, JP Moore, RW Sanders, NP King, D Baker… - PLoS …, 2020 - journals.plos.org

            [19] Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM

            …, RF Rocha, ZT Berndsen, D Baker… - Nature …, 2021 - nature.com

            [20] Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus

            …, KK Lee, D Veesler, CE Correnti, LJ Stewart, D Baker… - Cell, 2019 - Elsevier

            [21] Designed protein logic to target cells with precise combinations of surface antigens

            …, A Nguyen, S Pun, CE Correnti, SR Riddell, D Baker - Science, 2020 - science.org

            [22] De novo design of tyrosine and serine kinase-driven protein switches

            …, VH Wysocki, H El-Samad, D Baker - Nature structural & …, 2021 - nature.com

            [23] Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

            …, AB Ward, P Yager, DH Fuller, IA Wilson, D Baker - Nature …, 2017 - nature.com

            [24] Scaffolding protein functional sites using deep learning

            …, F DiMaio, B Correia, S Ovchinnikov, D Baker - Science, 2022 - science.org

            [25] M*lent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice

            …, BS Freedman, JD Bloom, H Ruohola-Baker… - Science translational …, 2022 - science.org

            [26] A computationally designed hemagglutinin stem-binding protein provides in vivo protection from influenza independent of a host immune response

            …, IA Wilson, A Dagley, DF Smee, D Baker… - PLoS …, 2016 - journals.plos.org

            [27] Computational design of a synthetic PD-1 agonist

            …, F DiMaio, KV Tarbell, D Baker - Proceedings of the …, 2021 - National Acad Sciences

            [28] First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor

            …, SH Orkin, D Baker, H Ruohola-Baker - Proceedings of the …, 2017 - National Acad Sciences

            [29] Designed proteins assemble antibodies into modular nanocages

            …, H Ruohola-Baker, J Mathieu, D Veesler, D Baker - Science, 2021 - science.org

            [30] Designed protein logic to target cells with precise combinations of surface antigens

            …, A Nguyen, S Pun, CE Correnti, SR Riddell, D Baker - Science, 2020 - science.org

            [31] De novo design of tyrosine and serine kinase-driven protein switches

            …, VH Wysocki, H El-Samad, D Baker - Nature structural & …, 2021 - nature.com

            [32] Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

            …, AB Ward, P Yager, DH Fuller, IA Wilson, D Baker - Nature …, 2017 - nature.com

            [33] Scaffolding protein functional sites using deep learning

            …, F DiMaio, B Correia, S Ovchinnikov, D Baker - Science, 2022 - science.org

            [34] M*lent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice

            …, BS Freedman, JD Bloom, H Ruohola-Baker… - Science translational …, 2022 - science.org

            [35] A computationally designed hemagglutinin stem-binding protein provides in vivo protection from influenza independent of a host immune response

            …, IA Wilson, A Dagley, DF Smee, D Baker… - PLoS …, 2016 - journals.plos.org

            [36] Computational design of a synthetic PD-1 agonist

            …, F DiMaio, KV Tarbell, D Baker - Proceedings of the …, 2021 - National Acad Sciences

            [37] First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor

            …, SH Orkin, D Baker, H Ruohola-Baker - Proceedings of the …, 2017 - National Acad Sciences

            [38] Designed proteins assemble antibodies into modular nanocages

            …, H Ruohola-Baker, J Mathieu, D Veesler, D Baker - Science, 2021 - science.org

            [39] Computational design of a pH-sensitive IgG binding protein

            …, SJ Fleishman, D Baker - Proceedings of the …, 2014 - National Acad Sciences

            [40] Design of protein-binding proteins from the target structure alone

            …, S Bernard, L Stewart, IA Wilson, H Ruohola-Baker… - Nature, 2022 - nature.com

            [41] De novo design of modular and tunable protein biosensors

            …, J Wi, HJ Hong, L Stewart, BH Oh, D Baker - Nature, 2021 - nature.com


             

            免責(zé)聲明

            • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
            • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
            • 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
            企業(yè)未開通此功能
            詳詢客服 : 0571-87858618