狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


            化工儀器網(wǎng)>技術(shù)中心>專業(yè)論文>正文

            歡迎聯(lián)系我

            有什么可以幫您? 在線咨詢

            南科大葛锜/王榮團(tuán)隊(duì):光固化3D打印高精度高強(qiáng)度聚合物衍生SiOC陶瓷

            來源:深圳摩方新材科技有限公司   2023年12月14日 16:04  
            聚合物衍生陶瓷(Polymer derived ceramic, PDC)技術(shù)是通過在真空、惰性或反應(yīng)性氣氛中對陶瓷前驅(qū)體(Preceramic polymer, PCP)進(jìn)行熱解來制備碳化物、氮化物和碳氮化物等非氧化物陶瓷。PDC技術(shù)的優(yōu)勢在于可以通過分子水平設(shè)計(jì)實(shí)現(xiàn)成分和微觀結(jié)構(gòu)的可調(diào)節(jié),制備工藝簡單且成本低廉。與傳統(tǒng)非氧化物陶瓷加工技術(shù)相比,其熱處理溫度較低,僅1000℃左右。由于PDC陶瓷具有優(yōu)異的力學(xué)性能以及耐高溫和耐腐蝕能力,一體化成型的復(fù)雜形狀PDC零部件在航空航天、國防、電子、能源工業(yè)等領(lǐng)域有著巨大的應(yīng)用潛力。



            由于PCP前驅(qū)體通常是透明含硅樹脂混合物,不含陶瓷顆粒,可通過3D打印技術(shù)制備各種高精度復(fù)雜三維結(jié)構(gòu),使其打印精度遠(yuǎn)高于粉末基陶瓷漿料。在眾多3D打印技術(shù)中,光固化3D打印技術(shù)擁有更高成型精度,能打印更復(fù)雜精細(xì)的結(jié)構(gòu)。盡管目前有各種關(guān)于3D打印PDC陶瓷的研究,但是其打印精度通常在100μm以上,仍未充分發(fā)揮光固化3D打印技術(shù)高精度的優(yōu)勢,且陶瓷產(chǎn)率和力學(xué)性能通常較差,無法滿足實(shí)際應(yīng)用需求。

            近日,南方科技大學(xué)葛锜/王榮團(tuán)隊(duì)開發(fā)了一種具有超高打印精度和高陶瓷產(chǎn)率的PCP前驅(qū)體,采用摩方精密nanoArch®S130(精度:2 μm)和microArch®S240(精度:10 μm)3D打印設(shè)備,制備了尺寸從亞毫米到厘米的多種復(fù)雜三維結(jié)構(gòu),打印精度高達(dá)5μm。PCP前驅(qū)體在1100℃真空熱解后轉(zhuǎn)化為SiOC陶瓷,陶瓷產(chǎn)率高達(dá)56.9%。研究團(tuán)隊(duì)設(shè)計(jì)了一種基于三重周期極小曲面(Triply Periodic Minimal Surface, TPMS)的I-WP結(jié)構(gòu)(孔隙率80%),該結(jié)構(gòu)SiOC陶瓷抗壓強(qiáng)度高達(dá)240 MPa,實(shí)際密度僅為0.367 g/cm3,對應(yīng)比強(qiáng)度為6.54×105 N·m/kg。超高打印精度、優(yōu)秀的比強(qiáng)度、高陶瓷產(chǎn)率以及復(fù)雜高精度零部件的可加工性能,這些特性可極大的促進(jìn)PDC陶瓷在工程領(lǐng)域和惡劣環(huán)境中的應(yīng)用。

            圖1中,a-c展示了3D打印聚合物衍生陶瓷流程。采用摩方高精度3D打印設(shè)備打印PCP前驅(qū)體,將打印所得生坯放入管式爐中,在真空條件下1100℃熱解即得到SiOC陶瓷。d展示了3D打印不同尺度陶瓷點(diǎn)陣結(jié)構(gòu)。e-f展示了各種不同尺寸的陶瓷機(jī)械零部件,包括螺紋件、齒輪軸、渦輪和棘輪結(jié)構(gòu)等。
             


            圖片


            圖1. 3D打印聚合物衍生SiOC陶瓷。a. DLP 光固化3D打印原理圖;b. 3D打印陶瓷前驅(qū)體生坯;c. 熱解后SiOC陶瓷點(diǎn)陣結(jié)構(gòu);d. 毫米到厘米尺度的陶瓷點(diǎn)陣結(jié)構(gòu);e. 3D打印各種陶瓷機(jī)械零件;f. 3D打印陶瓷棘輪。

            PCP前驅(qū)體采用聚硅氧烷SILRES®604、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TMSPM)和丙烯酸芐酯(BA)為基本原料(圖2a),苯基雙氧化膦為光引發(fā)劑,蘇丹橙G為光吸收劑。TMSPM同時(shí)含有“C=C”雙鍵和“Si(OCH3)3”基團(tuán)“Si(OCH3)3”基團(tuán)可水解為硅烷醇,并與聚硅氧烷發(fā)生縮合反應(yīng),而“C=C”鍵賦予有機(jī)硅樹脂光反應(yīng)活性(圖2b)。丙烯酸丁酯(BA)的加入一方面有效降低了體系粘度,另一方面提高了前驅(qū)體的光反應(yīng)活性和生坯力學(xué)性能,使其適用于超高精度光固化3D打?。▓D3)。
             


            圖片


            圖2. 材料和反應(yīng)原理。a. 用于制備PCP前驅(qū)體的材料:聚硅氧烷SILRES®604、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TMSPM)和丙烯酸芐酯(BA);b. PCP前驅(qū)體水解縮聚和光聚合反應(yīng)原理。
             


            圖片


            圖3. 604-TMSPM和604-TMSPM-BA前驅(qū)體性質(zhì)對比。a-b. 3D打印過程中繃膜對固化的604-TMSPM和604-TMSPM-BA前驅(qū)體作用效果示意圖;c. 前驅(qū)體的粘度隨剪切速率變化關(guān)系;d. 前驅(qū)體的光流變實(shí)驗(yàn)。陰影區(qū)域表示紫外光開啟的時(shí)間范圍;e. 前驅(qū)體生坯的應(yīng)力-應(yīng)變曲線。
               
            為了展示PCP前驅(qū)體的打印精度,研究團(tuán)隊(duì)打印了水平階梯測試面內(nèi)成型精度和垂直階梯測量層間成型精度。如圖4所示,面內(nèi)精度高達(dá)5μm,層間精度達(dá)9μm,可打印桿徑為8 μm的octet truss點(diǎn)陣結(jié)構(gòu)。
             


            圖片


            圖4. 打印精度表征。a. 3D打印水平階梯SEM圖,用于測量面內(nèi)打印精度;b. 水平階梯的局部放大圖,最小線寬為5 μm;c. 3D打印垂直階梯SEM圖,用于測量前驅(qū)體固化深度;d. 固化深度隨曝光能量函數(shù)關(guān)系;e-f. 3D打印桿徑為8 μm高精度octet truss點(diǎn)陣結(jié)構(gòu)(熱解前)。

            采用該P(yáng)CP前驅(qū)體可打印各種類型三重周期極小曲面(TPMS)結(jié)構(gòu)。如圖5所示,打印Gyroid、Schwarz P和I-WP結(jié)構(gòu)的總尺寸僅為0.73mm, I-WP結(jié)構(gòu)的最小壁厚僅為5μm。將這些陶瓷結(jié)構(gòu)與文獻(xiàn)報(bào)道數(shù)據(jù)進(jìn)行對比,在打印精度、比強(qiáng)度、硬度和陶瓷產(chǎn)率等四方面均處于水平(圖6),其中打印精度為目前DLP/SLA技術(shù)打印陶瓷結(jié)構(gòu)精度頂高水平。
             


            圖片


            圖5. 3D打印高精度SiOC陶瓷TPMS結(jié)構(gòu)(整體尺寸為亞毫米級,特征尺寸為微米級)。a, d, g. Gyroid結(jié)構(gòu);b, e, h. Schwarz P結(jié)構(gòu);c, f, i. I-WP結(jié)構(gòu)。
             


            圖片


            圖6. 3D 打印SiOC陶瓷的力學(xué)性能。a. 不同孔隙率TPMS結(jié)構(gòu)的應(yīng)力-應(yīng)變曲線;b. 不同TPMS結(jié)構(gòu)的壓縮強(qiáng)度比較;c. 文獻(xiàn)報(bào)道SiOC或SiC陶瓷結(jié)構(gòu)壓縮強(qiáng)度與密度的Ashby圖;d. 在打印精度、比強(qiáng)度、硬度和陶瓷產(chǎn)率等四方面與文獻(xiàn)進(jìn)行比較。

            相關(guān)研究成果以“Vat photopolymerization 3D printing of polymer-derived SiOC ceramics with high precision and high strength”為題發(fā)表在增材制造領(lǐng)域頂刊《Additive Manufacturing》上。本論文第一作者是博士生何向楠,共同一作兼共同通訊作者是研究助理教授王榮,通訊作者葛锜教授。該工作得到了國家自然科學(xué)基金委、廣東省科技廳和深圳市科創(chuàng)委的大力支持。

            免責(zé)聲明

            • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
            • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
            • 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
            企業(yè)未開通此功能
            詳詢客服 : 0571-87858618