產(chǎn)地類別 | 國產(chǎn) | 產(chǎn)品種類 | 差壓式 |
---|---|---|---|
價格區(qū)間 | 面議 | 介質(zhì)分類 | 氣體 |
應(yīng)用領(lǐng)域 | 環(huán)保,化工,石油,能源,包裝/造紙/印刷 |
產(chǎn)品簡介
詳細介紹
DN50煙氣流量計其工作機理是“卡門渦街”,是一類流體振蕩式的測量儀器。“卡門渦街”的原理是:待測管道流體中放進一根(或數(shù)根)非流線型截面的旋渦發(fā)生體,等到雷諾數(shù)到達特定數(shù)值,在旋渦發(fā)生體兩側(cè)分離出兩串交錯有序的旋渦,此過程具有交替性,我們將這種旋渦叫作卡門渦街 [3] 。在特定雷諾數(shù)范圍之間,旋渦的分離頻率同旋渦發(fā)生體與管道的幾何尺寸息息相關(guān)。數(shù)據(jù)表明,旋渦的分離頻率同流量存在正相關(guān)性,此頻率可通過傳感器獲得。以上渦街流量計與卡門渦街的關(guān)系可從圖1看出,二者有如下邏輯關(guān)系:
式中:
f 為旋渦分離頻率,Hz ;
S r 為斯特勞哈爾數(shù);
U 1 為旋渦發(fā)生體兩側(cè)的平均流速,m/s ;
d 為旋渦發(fā)生體迎流面的寬度,m;
U 為被測介質(zhì)來流的平均流速,m/s ;
m 為旋渦發(fā)生體兩側(cè)弓形面積與管道橫截面面積之比。不可壓縮流體中,由于流體密度 ? 不變,由連續(xù)性方程可得到: m = U / U 1 。
式中:K 為渦街流量計的儀表系數(shù),1 /m 3 。通過式(3)不難看出,儀表系數(shù) K 是渦街流量計的計量特性的定量表征,數(shù)據(jù)表明,其儀表系數(shù)只和其機械結(jié)構(gòu)與斯特勞哈爾數(shù)有關(guān),同來流流量并無相關(guān)性。
研究發(fā)現(xiàn),蒸汽對渦街流量計計量特性存在較大影響??煽偨Y(jié)為三個方面:
首先,從公式(3)中能夠得出,機械結(jié)構(gòu)尺寸 D 、m 、 d 以及斯特勞哈爾數(shù) S r 這些參數(shù)與K值大小存在較大關(guān)聯(lián)性?;谖锢碓硌芯堪l(fā)現(xiàn),在流體介質(zhì)條件存在差異情況下,機械結(jié)構(gòu)尺寸的改變一般是與溫度的改變引發(fā)的熱脹冷縮效應(yīng)息息相關(guān)。
第二,雷諾數(shù)對斯特勞哈爾數(shù) S r 產(chǎn)生較大影響,前者又與粘度密切相關(guān),而粘度的差異性又取決于流體的差異,既而引發(fā)斯特勞哈爾數(shù) S r 的區(qū)別。
第三,公式(3)的推導過程是以不可壓縮流體為前提的,當換作氣體介質(zhì)時,由于可壓縮性的區(qū)別或許會引發(fā)儀表系數(shù)產(chǎn)生誤差。以上三個因素對于渦街流量計的影響將在下一節(jié)進一步探討。
2 蒸汽介質(zhì)斯特勞哈爾數(shù)的影響
嚴格而言,斯特勞哈爾數(shù)是一種相似準則,是在討論流體力學中物理相似和?;且氲母拍?[4] 。其是用來表征旋渦頻率和阻流體特征尺寸、流速關(guān)系的。在特定雷諾數(shù)區(qū)間中,旋渦的分離頻率和旋渦發(fā)生體與管道的幾何尺寸密切相關(guān),換言之斯特勞哈數(shù)可視為定量。
由圖2可看出,在 R eD =2×10 4 7×10 6 區(qū)間內(nèi),斯特勞哈數(shù)是定值,此也是儀表的正常工作區(qū)間。
現(xiàn)實情形下, S r 即便在 R eD =2×10 4 7×10 6 區(qū)間內(nèi),也與 R eD 的改變發(fā)生變化,參照1989年日本制訂的渦街流量計工業(yè)標準JISZ8766《渦街流量計——流量測量方法》。2002年加以修訂,把渦街流量計發(fā)生體的固定形式歸為兩種,《標準》規(guī)定的旋渦設(shè)計,發(fā)生體依據(jù)插入測量管頂端固定與否區(qū)別為標準1型與標準2型,它們的 S r 值存在較小區(qū)別,詳見表1數(shù)據(jù)。
標準2型 S r 的平均值是0.25033,它的標準偏差是0.12%;而標準1型為0.3%,現(xiàn)階段我國一般廣泛采用標準1型。而標準2型在日本橫河儀表研制的渦街流量計普遍采用。
通過雷諾數(shù)的推導公式不難得出,檢測時,蒸汽和空氣因為粘度的區(qū)別,會引發(fā)雷諾數(shù)存在差異。參照一般實驗情況下三類流體介質(zhì)的工況差異,它們的運動粘度詳見表2:
式中:
? 表征介質(zhì)密度;
D 表征管徑;
u 表征流速;
? 表征介質(zhì)動力粘度;
v 表征介質(zhì)運動粘度。
通過以上各參數(shù)數(shù)據(jù)不難發(fā)現(xiàn),水的運動粘度低,空氣高,蒸汽介于二者之間。三者比例是1:15:4。所以若使雷諾數(shù)一致,應(yīng)使水的流速小,空氣大,蒸汽在區(qū)間取值。在對儀表的系數(shù)進行檢定過程中,通常應(yīng)考慮雷諾數(shù)一致時,真實測量過程中的差異性誤差。尤其在蒸汽的測量時,儀表量程的選型是參照在空氣介質(zhì)下測量獲得的體積流量區(qū)間與蒸汽的密度乘積,推導出蒸汽的體積流量區(qū)間。這種算法會引發(fā)差異性介質(zhì)下雷諾數(shù)的區(qū)間差異。細致分析上表可得出,只要雷諾數(shù)在既定范圍內(nèi),檢定過程中并不會由于介質(zhì)的不同造成較大的誤差,這個影響可不考慮。但雷諾數(shù)不可超出規(guī)定區(qū)間,否則會引發(fā) S r 的較大差異,造成誤差。
通過表3不難發(fā)現(xiàn),要得出渦街流量計基于低流量的限雷諾數(shù),口徑一致情況下三類介質(zhì)的小流速應(yīng)滿足1.0:4.0:15.0的大致比例。所以不可以將空氣介質(zhì)下的體積流量區(qū)間等同于蒸汽介質(zhì)下的數(shù)值。
3 蒸汽介質(zhì)物理特性影響分析
1873年,荷蘭著名物理學家范德瓦爾斯特實驗室中,發(fā)現(xiàn)了水蒸氣的物理性質(zhì),得出氣體分子間有著一定作用力,繼而推導出氣體的狀態(tài)方程以輔助理論驗證,這就是著名的范德瓦爾斯特氣體狀態(tài)方程 [5] 。進一步研究發(fā)現(xiàn),水蒸汽的分子的體積和相互的作用力比較大,無法以理想的氣體狀態(tài)方程加以表征。參照范德瓦爾斯特公式(5)的計算過程:
式中:
p 為壓強;
V 為1摩爾氣體的體積;
R 為普適氣體常數(shù);
a 為度量分子間引力的參數(shù);
b 為1摩爾分子本身包含的體積之和。
以上公式(5)中因子 a 和 b 的值因氣體的性質(zhì)不同而存在差異,一般地,氣體的分子間引力參數(shù) a 與 b 分子體積 表述如表3所示。
范德瓦爾斯特提出,氣體分子間的吸引力與間距存在負相關(guān)性,也就是密度的概念。把此理論使用在渦街流量計的測量過程中,通過表中的數(shù)據(jù)不難發(fā)現(xiàn),水蒸汽分子間的吸引力a的數(shù)值較大,相當于氧氣與氮氣的4倍多。所以,在測量實際氣體時,基于同等壓力條件,水的分子間的吸引力的數(shù)值較蒸汽與空氣大得多,而蒸汽又顯著大于空氣。用渦街流量計進行測量時,發(fā)生體兩側(cè)的位置因為流速加大,引起靜壓力減小,體積擴張,流體密度隨之減小,而水介質(zhì)由于分子間作用力大,并無明顯膨脹情況。蒸汽的分子間的吸引力比空氣大,所以前者膨脹性更低,密度變化也更小。參考流量的連續(xù)性方程得出,因為空氣密度變化更大,所以它的發(fā)生體兩側(cè)的流量變化較蒸汽介質(zhì)更大,所以它的儀表系數(shù)比蒸汽介質(zhì)變化更顯著。
技術(shù)參數(shù)
公稱通徑(mm) | 15,20,25,32,40,50,65,80,100,125,150,200,250,300,(300~1000插入式) |
公稱壓力(MPa) | DN15-DN200 4.0(>4.0協(xié)議供貨),DN250-DN300 1.6(>1.6協(xié)議供貨) |
介質(zhì)溫度(℃) | 壓電式:-40~260,-40~320; |
電容式: -40~300, -40~400,-40~450(協(xié)議訂貨) | |
本體材料 | 1Cr18Ni9Ti,(其它材料協(xié)議供貨) |
允許振動加速度 | 壓電式:0.2g 電容式:1.0~2.0g |
精確度 | ±1%R,±1.5%R,±1FS;插入式:±2.5%R,±2.5%FS |
范圍度 | 1:6~1:30 |
供電電壓 | 傳感器:+12V DC,+24V DC;變送器:+12V DC ,+24V DC;電池供電:3.6V |
輸出信號 | 方波脈沖(不包括電池供電型):高電平≥5V,低電平≤1V;電流:4~20mA |
壓力損失系數(shù) | 符合JB/T9249標準 Cd≤2.4 |
防爆標志 | 本安型:ExdⅡia CT2-T5隔爆型:ExdⅡCT2-T5 |
防護等級 | 普通型IP65 潛水型 IP68 |
環(huán)境條件 | 溫度-20℃~55℃,相對濕度5%~90%,大氣壓力86~106kPa |
適用介質(zhì) | 液體、氣體、蒸汽 |
傳輸距離 | 三線制脈沖輸出型:≤300m,兩線制4~20mA輸出型:負載電阻≤750Ω |
表2法蘭卡裝參考尺寸(mm)
表3法蘭連接參考尺寸(mm)
DN50煙氣流量計溫壓補償通常指儀表測量的數(shù)據(jù)是在溫度25度,壓力為一個標準大氣壓為條件下的結(jié)果,通常測量現(xiàn)場的溫度和壓力與標準有區(qū)別,所以一般儀表都能測量現(xiàn)場溫度與壓力,然后通過計算公式對測量結(jié)果進行自動補。
做計量用的氣體測量時,由于要盡量準確,而工藝條件在不斷變化,即被測氣體的溫度、壓力在不斷變化中,造成被測氣體的密度也就不斷變化,如果不進行溫壓補償,測量的氣體流量肯定不會準確,所以測量時將被測氣體的溫度、壓力引入流量測量系統(tǒng),使系統(tǒng)通過換算進行補償,這樣就使得測量結(jié)果盡量準確。般來說,絕大多數(shù)液體不需要補償,而氣體、蒸汽、某些液體的密度會隨溫度、壓力的變化而變化,那么就要進行補償了。
渦街流量計中氣體渦街流量計是比較精準又經(jīng)濟的流量計,304(316L)材質(zhì)有多種安裝方式。渦街流量計是否需要溫壓補償,要看實際需要,如果工況偏差不大或要求不高,就不必進行溫壓補償。如果需要*計量,就需要進行補償。補償一般采用現(xiàn)場安裝壓力、溫度傳感器,將壓力、溫度、流量數(shù)據(jù)上傳至PLC進行計算得到標況流量。
比如空氣流量的測量,常用的流量計都是當前溫度壓力下的體積流量,但是空氣的體積一定時其質(zhì)量受溫度壓力影響較大,計算公式為: PV=NRT=>m=MPV/RT 理想氣體狀態(tài)方程,其中R是常數(shù),約為8.314J/(mol·K);P為氣體壓強,單位Pa;M是該物質(zhì)的摩爾質(zhì)量(或者混合氣體的平均摩爾質(zhì)量);V為氣體體積,單位m3;T為體系溫度,單位K。 為了近似計算,溫度看成常溫20℃(293K),該氣體近似理想氣體。
空氣質(zhì)量m=29g/mol×101325Pa×1m³÷8.314J/(mol·K)÷293.15K=1205.63g=1.2kg 從公式中可以看出空氣質(zhì)量與溫度壓力關(guān)系很大,所以儀表測量時要先測量出現(xiàn)場的溫度和壓力然后進行自動補償。
還有具體測量時要看具體介質(zhì):
1、測量氣體時,需要溫度壓力同時補償;氣體一般都以標準狀況體積流量結(jié)算。因為氣體的體積流量溫度或壓力變化時,流量都會改變。
2、測量過熱蒸汽時,需要溫度壓力同時補償;蒸汽一般都以質(zhì)量流量結(jié)算。因為溫度或壓力有任何一個發(fā)生變化,蒸汽的密度會發(fā)生改變,質(zhì)量流量也隨之改變。
3、測量飽和蒸汽時,需要單溫度補償或單壓力補償。飽和蒸汽的密度與溫度或壓力有一個固定的對應(yīng)關(guān)系(飽和蒸汽密度表),知道其中的任何一個,都可以確定飽和蒸汽的密度。
4、測量液體時,一般不需要壓力補償,在5MPa以下,一般只考慮溫度影響,為準確測量需要溫度補償。一般測量時,可以不使用任何補償;測量一些碳氫化合物(如原油),一般需要溫度壓力同時補償。
溫壓補償氣體蒸汽渦街流量計的優(yōu)點如下:
1、大優(yōu)點是抗振性能特別好,無零點漂移,可靠性高。
2、傳感器的通用性很強,從而使傳感器具有良好的互換性采用*數(shù)控設(shè)備加工傳感器的表體和旋渦發(fā)生體等,確保加工精度,從而使零部件(特別是旋渦發(fā)生體)的通用性強,從而真正做到不會因零部件的更換而影響傳感器的重復性和精度;能產(chǎn)生強大而穩(wěn)定的渦街信號。
3、在一定的雷諾數(shù)范圍內(nèi),流量特性不受流體壓力、溫度、黏度、密度、成分的影響,僅是與旋渦發(fā)生體的形狀和尺寸有關(guān)。
4、輸出與流量成正比的脈沖信號或模擬信號,無零點漂移,精度高,方便與計算機聯(lián)網(wǎng)。
5、結(jié)構(gòu)簡單牢固,無可動部件,可靠性高,使用維護方便。
6、檢測元件不與介質(zhì)接觸,性能穩(wěn)定,使用壽命長,傳感器采用檢測探頭與旋渦發(fā)生體分開安裝,而且耐高溫的壓電晶體密封在檢測探頭內(nèi),不與被測介質(zhì)接觸,所以渦街流量計具有結(jié)構(gòu)簡單、通用性好和穩(wěn)定性高的特點。
7、測量范圍寬,量程比可達1:10。
8、測量體積流量時不需補償,渦街輸出的信號實際上是與流速成線性關(guān)系的,也就是與體積流量成正比。壓力和溫度補償?shù)哪康氖菫榱说玫搅黧w的密度,乘以體積流量就得到質(zhì)量流量,若測量氣體的體積流量就不需要補償