狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當前位置:
            美國布魯克海文儀器公司>技術文章>High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal

            技術文章

            High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal

            閱讀:382          發(fā)布時間:2017-4-27
             作者 Hui Sua, Zhibin Yea, Nuri Hmidib

            a Bharti School of Engineering, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

            b Goldcorp Incorporated, Red Lake Gold Mines, 15 Mine Road, Box 2000, Balmertown, Ontario P0V 1C0, Canada

             

            摘要:We report the synthesis of a new range of iron oxide–graphene oxide (GO) nanocomposites having different iron oxide content (36–80 wt%) as high-performance adsorbents for arsenic removal. Synthesized by co-precipitation of iron oxide on GO sheets that are prepared by an improved Hummers method, the iron oxide in the nanocomposites is featured primarily in the desirable form of amorphous nanoparticles with an average size of ca. 5 nm. This unique amorphous nanoparticle morphology of the iron oxide beneficially endows the nanocomposites with high surface area (up to 341 m2 g−1 for FeOx–GO-80 having the iron oxide content of 80 wt%) and predominant mesopore structures, and consequently increased adsorption sites and enhanced arsenic adsorption capacity. FeOx–GO-80 shows high maximum arsenic adsorption capacity (qmax) of 147 and 113 mg g−1 for As(III) and As(V), respectively. These values are the highest among all the iron oxide–GO/reduced GO composite adsorbents reported to date and are also comparable to the best values achieved with various sophisticatedly synthesized iron oxide nanostructures. More strikingly, FeOx–GO-80 is also demonstrated to nearly compley (>99.98%) removes arsenic by reducing the concentration from 118 (for As(III)) or 108 (for As(V)) to <0.02 μg L−1, which is far below the limit of 10 μg L−1 recommended by the World Health Organization (WHO) for drinking water. The excellent adsorption performance, along with their low cost and convenient synthesis, makes this range of adsorbents highly promising for commercial applications in drinking water purification and wastewater treatment.

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機商鋪
            010-62081908
            在線留言