狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊(cè)

            當(dāng)前位置:
            美國(guó)布魯克海文儀器公司>技術(shù)文章>測(cè)量應(yīng)用案例-20200509

            技術(shù)文章

            測(cè)量應(yīng)用案例-20200509

            閱讀:214          發(fā)布時(shí)間:2020-5-26
             文獻(xiàn)名: Effects of core-shell polycarboxylate superplasticizer on the fluidity and hydration behavior of cement paste

             

            作者 Shengli Chena,b, Shenmei Suna, Xiaolong Chena, Kaihong Zhonga, Qiang Shaoa, Haijun Xua, Jiangxiong Weib

            a    Department of Building Materials, Guangzhou Institute of Building Science Co., Ltd., Guangzhou Municipal Construction Group Co., Ltd., Guangzhou, Guangdong 510440, People's Republic of China

            b    School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People’s Republic of China

             

            摘要:Polycarboxylate superplasticizer nanomicelles (nano-PCEs) with a core-shell structure were prepared via aqueous emulsion copolymerization in one pot. The shells are constructed with hydrophilic segments of poly(acrylic acid)-co-poly(isobutenyl polyethenoxy ether) (PAA-co-PHPEG), offering the water-reducing performance and stability for nano-PCEs. The cores are self-assembled with hydrophobic segments of polystyrene-co-poly(hydroxyethyl acrylate) (PS-co-PHEA), endowing nano-PCEs with good loss resistant of fluidity for cement pastes. The chemical structure of nano-PCEs was verified by the nuclear magnetic resonance spectrum (1H NMR) and fourier transform infrared spectroscopy (FTIR), and the 16−48?nm diameter of nano-PCE nanomicelles was determined by dynamic laser scattering (DLS) and transmission electron microscopy (TEM). Compared with comb PCEs, the cement paste containing nano-PCEs exhibited better fluidity retention of three hours by mini-slump measurements, lower hydration heat and more delayed hydration heat evolution by isothermal calorimetry tests. Furthermore, the hydrolysis and adsorption behavior of nano-PCEs in alkaline cement pastes were deduced, and a working mechanism of nano-PCEs was theoretically explained. This new type of superplasticizer nanomicelles can be used as a long time rheology modifying agent in fresh cementitious systems.

            收藏該商鋪

            請(qǐng) 登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

            對(duì)比框

            產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見(jiàn)反饋 在線交流

            掃一掃訪問(wèn)手機(jī)商鋪
            010-62081908
            在線留言