狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產品展廳收藏該商鋪

            您好 登錄 注冊

            當前位置:
            美國布魯克海文儀器公司>技術文章>測量應用案例-40

            技術文章

            測量應用案例-40

            閱讀:130          發(fā)布時間:2021-8-19
             

            文獻名:Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts

             

             

            作者 David F.F. BrossaultThomas M.Mc Coy,Alexander F. Routh

            a BP Institute, University of Cambridge, Madingley Rise, Cambridge CB3 0EZ, United Kingdom

            b Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, United Kingdom

             

             

            摘要:

            Hypothesis

            A green approach for producing magnetic photocatalysts via direct agglomeration of commercial nanoparticles in emulsion is shown. Aggregation is attributed to charge screening by salt addition which reduces stabilising repulsive forces between particles, and different nanoparticles (TiO2, Fe3O4 and SiO2) serve to imbue the final agglomerates with desired adsorption, photodegradation and magnetic properties.

            Experiment

            Titania doped magnetic silica microbeads (TiO2/Fe3O4/SiO2) were produced at room temperature by CaCl2-induced aggregation of nanoparticles in a reverse emulsion template. The beads were characterized using optical microscopy, SEM, STEM, EDX and zeta potential measurements. The adsorption and photocatalytic properties of the system as well as its reusability were investigated using Rhodamine B and Methylene Blue as model pollutants.

            Results

            Magnetically responsive beads approximately 3–9 µm in diameter incorporating SiO2, TiO2 and Fe3O4 nanoparticles were produced. Adsorption and photodegradation properties of the beads were confirmed by bleaching solutions of Rhodamine B, Methylene Blue as well as mixtures of both dyes. Reusability of the beads after magnetic separation was demonstrated, exhibiting a dye removal efficiency greater than 93% per cycle for three consecutive cycles of UV-light irradiation. This method is simpler than conventional sol–gel methods and offers a green and easy to implement approach for producing structured functional materials.

             

            關鍵詞:

            Green chemistry;Magnetic photocatalysts;Emulsion;Nanoparticles;Hetero-coagulation;Water treatment

             

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復您~

            對比框

            產品對比 產品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機商鋪
            010-62081908
            在線留言