狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當前位置:
            美國布魯克海文儀器公司>技術(shù)文章>測量應(yīng)用案例-20220508

            技術(shù)文章

            測量應(yīng)用案例-20220508

            閱讀:135          發(fā)布時間:2022-5-10
             

            文獻名: Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure

             

             

            作者 Xiaoyun Xie,Shan Li,Kemin Qi,Zhaowei Wang

            Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

             

             

             

            摘要:Seeking green, highly efficient and recyclable photocatalysts for emerging pollutants removal is urgent and desirable in water treatment area. In this work, novel and environmental-friendly photocatalyst Fe3O4/BiOBr/CQDs decorated by corncob biomass carbon quantum dots (CQDs) was fabricated successfully via photoinduced method for the first time. More CQDs as electrons reservoir were deposited on the (1 1 0) facet of BiOBr by photoinduced strategy compared to common hydrolysis method through morphology observation. Besides, enhanced visible light absorption and photogenerated charge transfer efficiency make Fe3O4/BiOBr/CQDs perform best photocatalytic activity towards carbamazepine (CBZ, 10?mg/L) removal, where 99.52% CBZ could be eliminated within 120?min light irradiation. Moreover, ·O2, h+ and ·OH dominated the photodegradation process and three detailed degradation pathways depicted the transformation behavior of CBZ, which were mainly attributed to Z-scheme structure construction caused by electronic bridging and up-conversion photoluminescence of biomass CQDs. A series of photoelectrochemical tests verified the existence of CQDs and Fe3O4 solved the high charge recombination rate and low electron utilization problems of BiOBr indeed. Combined with the rational utilization of corncob waste biomass, this research indicates green photocatalyst Fe3O4/BiOBr/CQDs synthesized by photoinduced method will have wide potential in water pollutant treatment in the future.

             

            關(guān)鍵詞:Fe3O4/BiOBr/CQDsPhotocatalystCarbamazepine,PhotoinductionCharge transfer

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復(fù)您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機商鋪
            010-62081908
            在線留言