狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當(dāng)前位置:
            美國布魯克海文儀器公司>技術(shù)文章>測量應(yīng)用案例-20220706

            技術(shù)文章

            測量應(yīng)用案例-20220706

            閱讀:105          發(fā)布時(shí)間:2022-7-26
             

            文獻(xiàn)名: Bi19S27I3 nanorods: a new candidate for photothermal therapy in the first and second biological near-infrared windows

             

             

            作者 Jinsong Xiong, a   Qinghuan Bian, a   Shuijin Lei,  a   Yatian Deng,a   Kehan Zhao,a   Shunqiang Sun,a   Qi Fu,a   Yanhe Xiaoa  and  Baochang Cheng a  

            a School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China

             

            摘要:Near-infrared (NIR) light-induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in photothermal therapy systems, a variety of photothermal agents have been developed. However, the exploration of novel photothermal therapy nanoplatforms with high NIR absorption remains a significant challenge, especially those working in both NIR-I and NIR-II windows. In this work, Bi19S27I3 nanorods with remarkably high absorption covering the whole visible light to the entire NIR-I and NIR-II regions have been successfully prepared through a facile solvothermal approach. The as-synthesized Bi19S27I3 nanorods have a high photothermal conversion efficiency of 42.7% at 808 nm (NIR-I) and 41.5% at 1064 nm (NIR-II), making them a promising candidate for photothermal therapy. In vitro cell viability assay reveals that the Bi19S27I3 sample has good biocompatibility and exhibits significant cell-killing effect under NIR irradiation. In vivo anti-tumor experiments demonstrate that the tumor growth can be effectively inhibited by fatal hyperthermia ablation mediated by Bi19S27I3 nanorods under the irradiation of an 808 nm or 1064 nm laser. Therefore, this study should be primarily beneficial for the development of new materials for NIR photothermal therapy applications.

             

             

            關(guān)鍵詞:

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機(jī)商鋪
            010-62081908
            在線留言