狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊(cè)

            當(dāng)前位置:
            美國(guó)布魯克海文儀器公司>技術(shù)文章>測(cè)量應(yīng)用案例-20220709

            技術(shù)文章

            測(cè)量應(yīng)用案例-20220709

            閱讀:108          發(fā)布時(shí)間:2022-7-26
             

            文獻(xiàn)名:U (VI) sequestration by Al-rich minerals: Mechanism on phase dependence and the influence of natural organic matter

             

             

            作者 Zequan Liuab,Tao Ouab,Minhua SuabHairong Pengab,Gang SongabLingjun Kongab,Diyun Chenab

            a School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China

            b Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China

             

             

            摘要:Uranium and uranium-containing pollutants are excessively released into the environment, leading to serious water and soil contamination. Minerals such as alumina are naturally abundant and frequently affect the fate and migration behavior of uranium ions. A thorough understanding of the migration and immobilization behavior of uranium on Al-rich minerals (e.g., α-alumina [α-Al2O3] and γ-alumina [γ-Al2O3)]) is essential for unraveling numerous environmental issues. We performed a systematic comparative analysis of U(VI) retention by α-/γ-alumina. The effects of coexisting ions and natural organic matter were explored. Solution pH contributed critically to the retention of U(VI) by α-/γ-alumina. The adsorption rate of γ-Al2O3 for U(VI) removal was faster than that of α-Al2O3, reaching equilibrium within 15 min with a high removal efficiency of 94.43%. PO43− ions significantly promoted U(VI) adsorption, especially for the case of α-Al2O3. The addition of phosphate resulted in a 15-fold enhancement in adsorption capacity. Humic acid promoted U(VI) removal by γ-Al2O3 under acidic conditions while strong inhibition on both α-Al2O3 and γ-Al2O3 in basic conditions. The removal mechanism of U(VI) by alumina is mainly ascribable to electrostatic interaction and surface complexation from various oxygenated functional groups. The present findings are pivotal to the understanding of uranium migration and immobilization in the environment.

             

            關(guān)鍵詞:Adsorption;Alumina;Crystal structure;Humic acidUranium (VI)

            收藏該商鋪

            請(qǐng) 登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

            對(duì)比框

            產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機(jī)商鋪
            010-62081908
            在線留言