狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當(dāng)前位置:
            美國布魯克海文儀器公司>技術(shù)文章>ZetaPALS測量應(yīng)用案例-2016-7

            技術(shù)文章

            ZetaPALS測量應(yīng)用案例-2016-7

            閱讀:555          發(fā)布時間:2016-4-19
             
             
            文獻(xiàn)名: Nanoscale, Voltage-Driven Application of Bioactive Substances onto Cells with Organized Topography
             
            作者: Sophie Schobesberger1, Peter Jönsson3, Andrey Buzuk1, Yuri Korchev1, Jennifer Siggers2, Julia Gorelik1 
            1 Department of Medicine, Imperial College London, London, United Kingdom
            2 Department of Bioengineering, Imperial College London, London, United Kingdom
            3 Department of Chemistry, Lund University, Lund, Sweden
             
             
            摘要:With scanning ion conductance microscopy (SICM), a noncontact scanning probe technique, it is possible both to obtain information about the surface topography of live cells and to apply molecules onto specific nanoscale structures. The technique is therefore widely used to apply chemical compounds and to study the properties of molecules on the surfaces of various cell types. The heart muscle cells, i.e., the cardiomyocytes, possess a highly elaborate, unique surface topography including transverse-tubule (T-tubule) openings leading into a cell internal system that exclusively harbors many proteins necessary for the cell’s physiological function. Here, we applied isoproterenol into these surface openings by changing the applied voltage over the SICM nanopipette. To determine the grade of precision of our application we used finite-element simulations to investigate how the concentration profile varies over the cell surface. We first obtained topography scans of the cardiomyocytes using SICM and then determined the electrophoretic mobility of isoproterenol in a high ion solution to be −7 × 10−9 m2/V s. The simulations showed that the delivery to the T-tubule opening is highly confined to the underlying Z-groove, and especially to the first T-tubule opening, where the concentration is ∼6.5 times higher compared to on a flat surface under the same delivery settings. Delivery to the crest, instead of the T-tubule opening, resulted in a much lower concentration, emphasizing the importance of topography in agonist delivery. In conclusion, SICM, unlike other techniques, can reliably deliver precise quantities of compounds to the T-tubules of cardiomyocytes
             

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復(fù)您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機(jī)商鋪
            010-62081908
            在線留言