狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊(cè)

            當(dāng)前位置:
            美國(guó)布魯克海文儀器公司>資料下載>測(cè)量應(yīng)用案例-20190502

            資料下載

            測(cè)量應(yīng)用案例-20190502

            閱讀:205          發(fā)布時(shí)間:2019-5-28
            提 供 商 美國(guó)布魯克海文儀器公司 資料大小 930.9KB
            資料圖片 下載次數(shù) 40次
            資料類型 PDF 文件 瀏覽次數(shù) 205次
            免費(fèi)下載 點(diǎn)擊下載    
             文獻(xiàn)名: Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating

             

            作者: Jianzhou Hea,b; Dengjun Wangc; Dongmei Zhoua

            aKey Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

            bUniversity of Chinese Academy of Sciences, Beijing 100049, China

            cNational Research Council Resident Research Associate, U.S. Environmental Protection Agency, Ada, OK 74820, United States

             

            摘要:Soils are considered as a major sink for engineered nanoparticles (ENPs) because of their inevitable release to the subsurface environment during production, transportation, use and disposal processes. In this context, the transport and retention of silver nanoparticles (AgNPs) with different input particle concentration, particle size, and surface coating were investigated in clay loam using water-saturated column experiments. Our results showed that the mobility of AgNPs in the soil was considerably low, and >73.9% of total injected AgNPs (except for no coating condition) was retained in columns. This is primarily due to the high specific surface area and favorable retention sites in soil. Increased transport of AgNPs occurred at higher input concentration and smaller particle size. The presence of surface coatings (i.e., polyvinylpyrrolidone (PVP) and citrate) further promoted the transport and reduced the retention of AgNPs in soil, which is likely due to their effective blocking of the solid-phase sites that are originally available for AgNPs retention. Although the shape of retention profiles (RPs) of AgNPs was either hyperexponential or nonmonotonic that is different from the colloid filtration theory prediction, the 1-species (consider both time- and depth-dependent retention) and/or 2-species (account for the release of reversibly deposited AgNPs) model successfully described the transport behaviors of AgNPs in soil columns under all the investigated conditions. This study proves the applicability of mathematical model in predicting the fate and transport of ENPs in real soils, and our findings presented herein are significant to ultimately develop management strategies for reducing the potential risks of groundwater contamination due to ENPs entering the environment.

            收藏該商鋪

            請(qǐng) 登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

            對(duì)比框

            產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 在線交流

            掃一掃訪問(wèn)手機(jī)商鋪
            010-62081908
            在線留言