狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當(dāng)前位置:
            美國布魯克海文儀器公司>資料下載>測量應(yīng)用案例-20200702

            資料下載

            測量應(yīng)用案例-20200702

            閱讀:139          發(fā)布時間:2020-7-6
            提 供 商 美國布魯克海文儀器公司 資料大小 3.1MB
            資料圖片 下載次數(shù) 17次
            資料類型 PDF 文件 瀏覽次數(shù) 139次
            免費下載 點擊下載    
             文獻名: The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate

             

            作者 Afshin Malekia, Farzaneh Moradia, Behzad Shahmoradia, Reza Rezaeea, Seung-Mok Leeb

            a    Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

            b    Department of Environmental Engineering, Catholic Kwandong University, Ganeung, 25601, South Korea

             

            摘要:Diazinon is an important organophosphorus pesticide with extensive use, which is considered to be a major health hazard for humans due to its adverse effects on cholinesterase activity and central nervous system. The entry of diazinon into water resources affects a wide range of non-target organisms, which highlights the importance of its removal from water resources. The present study aimed to synthesize and use WO3 doped ZnO nanocatalyst to degrade diazinon. Zinc oxide nanoparticles were synthesized using the hydrothermal method and doped with 0.5%, 1%, and 2% M tungsten oxide. Moreover, the effects of dopant percentage, pH, the initial concentration of diazinon, nanoparticle dosage, and contact time were investigated. The results of EDS revealed that W was doped into ZnO structure. The maximum diazinon degradation (99%) was obtained using 10 mg/cm−2 2% WO3 doped ZnO, 10?mg/l diazinon, neutral pH value and contact time of 180?min. Removal efficiency was decreased by increasing pH and initial diazinon concentration. The experimental kinetic data followed the pseudo-first order model. The reaction rate constant (kobs) was decreased from 0.0205 to 0.0034 1/min with increasing initial diazinon concentration from 10 to 200?mg/L, respectively. The figures of merit based on electric energy consumption (EEO) indicate that less energy is consumed during the degradation of diazinon in the presence of 2% WO3 doped ZnO compared with other photocatalysts. Therefore, it could be concluded that 2%WO3 doped ZnO is a promising material for photocatalytic degradation of diazinon with high efficiency under optimal condition.

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復(fù)您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 在線交流

            掃一掃訪問手機商鋪
            010-62081908
            在線留言