狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊(cè)

            當(dāng)前位置:
            美國(guó)布魯克海文儀器公司>公司動(dòng)態(tài)>測(cè)量應(yīng)用案例-66-200SM

            公司動(dòng)態(tài)

            測(cè)量應(yīng)用案例-66-200SM

            閱讀:169          發(fā)布時(shí)間:2015-9-11
            文獻(xiàn)名: Asparagine Repeat Peptides: Aggregation Kinetics and Comparison with Glutamine Repeats
             
            作者: Xiaomeng Lu† and Regina M. Murphy*‡
            †Biophysics Program and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
             
            摘要:Amino acid repeat runs are common occurrences in eukaryotic proteins, with glutamine (Q) and asparagine (N) as particularly frequent repeats. Abnormal expansion of Q-repeat domains causes at least nine neurodegenerative disorders, most likely because expansion leads to protein misfolding, aggregation, and toxicity. The linkage between Q-repeats and disease has motivated several investigations into the mechanism of aggregation and the role of Q-repeat length in aggregation. Curiously, glutamine repeats are common in vertebrates, whereas N-repeats are virtually absent in vertebrates, but common in invertebrates. One hypothesis for the lack of N-repeats in vertebrates is biophysical; that is, there is strong selective pressure in higher organisms against aggregation-prone proteins. If true, then asparagine and glutamine repeats must differ substantially in their aggregation properties despite their chemical similarities. In this work, aggregation of peptides with asparagine repeats of variable length (12–24) were characterized and compared to that of similar peptides with glutamine repeats. As with glutamine, aggregation of N-repeat peptides was strongly length-dependent. Replacement of glutamine with asparagine caused a subtle shift in the conformation of the monomer, which strongly affected the rate of aggregation. Specifically, N-repeat peptides adopted β-turn structural elements, leading to faster self-assembly into globular oligomers and much more rapid conversion into fibrillar aggregates, compared to Q-repeat peptides. These biophysical differences may account for the differing biological roles of N- versus Q-repeat domains.

            收藏該商鋪

            請(qǐng) 登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

            對(duì)比框

            產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見(jiàn)反饋 在線交流

            掃一掃訪問(wèn)手機(jī)商鋪
            010-62081908
            在線留言