狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當(dāng)前位置:
            美國布魯克海文儀器公司>公司動態(tài)>測量應(yīng)用案例-67-200SM

            公司動態(tài)

            測量應(yīng)用案例-67-200SM

            閱讀:148          發(fā)布時間:2015-9-11
            文獻(xiàn)名: Interfacial Tension-Hindered Phase Transfer of Polystyrene-b-poly(ethylene oxide) Polymersomes from a Hydrophobic Ionic Liquid to Water
             
            作者: Soonyong So† and Timothy P. Lodge*†‡
            †Department of Chemical Engineering & Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
             
            摘要:We examine the phase transfer of polystyrene-b-poly(ethylene oxide) (PS–PEO) polymersomes from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), into water. The dependence of the phase transfer on the molecular weight and PEO volume fraction (fPEO) of the PS–PEO polymersomes was systematically studied by varying the molecular weight of PS (10?000–27?000 g/mol) as well as by varying the volume fraction of PEO (fPEO) between 0.1 and 0.3. We demonstrate a general boundary for the phase transfer in terms of a reduced tethering density for PEO (σPEO), which is independent of the molecular weight of the hydrophobic PS. The reduced PEO tethering density was controlled by changing the polymersome size (i.e., increased polymersome sizes increase σPEO), confirming that it is the driving force in the transfer of PS–PEO polymersomes at room temperature. The phase transfer dependence on σPEO was also analyzed in terms of the free energy of polymersomes in the biphasic system. The quality of the aqueous phase, which affects the interfacial tension of the PS membrane, influenced the phase transfer. We systematically reduced the interfacial tension by adding a water-selective solvent, THF, which has a similar effect to increasing σPEO. The results indicate that the interfacial tension between the membrane and water plays an important role in the phase transfer with the corona and that the phase transfer can be controlled either by the dimensions of the polymersomes or by the suitability of the solvent for the membrane. The interfacial tension-hindered phase transfer of polymersomes in the biphasic water–[EMIM][TFSI] system will inform the design of temperature-sensitive and reversible nanoreactors and the separation of polydisperse particles according to size by tuning the quality of the solvent.
             

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復(fù)您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

            掃一掃訪問手機(jī)商鋪
            010-62081908
            在線留言